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Acoustic propagation boundary treatment error control.

• Propagation by the Linearized Euler Equations (LEE).

• Algorithms are 3rd, 5th, 7th and 9th order in time and space.

• Time accurate Damping Layer (DL) boundary treatment.

• Polynomial damping profiles are 2nd, 4th, 6th and 8th order.

• Propagating solution uniformly set to zero on outer boundary.

• Maximum relative absolute errors from O[10−3] to O[10−7].
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Linearized Euler Equation Conventions.

• Cartesian coordinates (x, y) in two space dimensions.

• Primitive variables ~V = (σ, u, v, p)T , with σ = 1/ρ.

• Nondimensionalized with ρR, LR and speed of sound aR.

• σR = 1/ρR, tR = LR/aR, pR = a2
RρR =

a2
R

σR
and γ = 1.4.

• For both dimensional and nondimensional variables,
a2 = γp

ρ = γpσ, so that the equation form is the same.
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Linearized Euler Equations (LEE) in 2D.
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Vector form of the LEE in 2D with a source.

∂~V

∂t
+ Ab

∂~V

∂x
+ Bb

∂~V

∂y
+ A

∂~Vb

∂x
+ B

∂~Vb

∂y
= ~S,

~V = (σ, u, v, p)T = (1/ρ, u, v, p)T ,

~S(x, y, t) = (0,0,0,0.01 sin[2πt] exp[−25(x2n + y2)])T .

• Either uniform base flow ~Vb = (1,0.4,0,1/γ)T ,
or a parallel jet ~Vb = (1,0.4 + 0.4 exp[−25y2], 0,1/γ)T .

• The coefficient matrices A and B are from ~V ,
while the coefficient matrices Ab and Bb are from ~Vb.
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LEE 2D: GS = 0.01 Sin[2 pi t] Exp[25 (x2+y2)], UF = (0.4,0).
c8o0 algorithm: h = 1/12, k = 1/36, ot = 7.
DLC & ZBD for (x,y) in [13,19] x [18,18]. Pressure at t = 25.

Frame 001  24 May 2017  lee2dgsufc8o0dlczbd.f90 dat file
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Damping Layers.

• The numerical domain is ΩN = [−xL, xR] × [−yB, yT ].

• Unsteady pressure source pS centered at the origin in ΩN .

• Damping layers of width wR, wL and wY around ΩN .

• The complete computational domain is

ΩC = [−(xL + wL), xR + wR] × [−(yB + wY ), yT + wY ],

with ΩN ⊂ ΩC as the inner core where accuracy is desired.
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N th order polynomial damping profiles A.

Damping is done with polynomial damping profiles in x,

Dx(x) = δR((x − xR)/wR)N , for + xR < x ≤ +xR + wR,

= 0, for − xL ≤ x ≤ +xR,

= δL((x − xL)/wL)N , for − (xL + wL) ≤ x < −xL,

and in y,

Dy(y) = δT ((y − yT )/wY )N , for + yT < y ≤ +yT + wY ,

= 0, for − yB ≤ y ≤ +yT ,

= δB((y − yB)/wY )N , for − (yB + wY ) ≤ y < −yB.
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N th order polynomial damping profiles B.

• We assume wR = wL = wy = w, with w = 5 or w = 10.

• We assume δR = δL = δy = δ, with 0 ≤ δ ≤ 50.

• We consider N = 2, N = 4, N = 6 and N = 8.

• Damping is done with modified governing equations in ΩC,

∂~V

∂t
+ Ab

∂~V

∂x
+ Bb

∂~V

∂y
+ A

∂ ~Vb

∂x
+ B

∂ ~Vb

∂y
+(Dx(x)+ Dy(y))~V = ~S.
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Centered-Staggered/Cauchy-Kowaleskya/Tailor
cno0 Propagation Method.

• Interpolation of an n2 data surface by dimensional recursion.

• Cauchy-Kowaleskya recursion for time derivatives

∂a+b+m∂t
~V

∂xa∂yb∂tm
= −

∂a+b+m(Ab∂x~V + Bb∂y~V )

∂xa∂yb∂tm

−
∂a+b+m(A∂x~Vb + B∂y~Vb)

∂xa∂yb∂tm

−
∂a+b+m(Dx + Dy)~V

∂xa∂yb∂tm
+

∂a+b+m~S

∂xa∂yb∂tm
.

• Time advance by Taylor series.
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Maximum Relative Error with No Damping (δ = 0): A.

• c4o0 computes with h = 1/8 and k = 1/24.

c6o0, c8o0 and c10o0 compute with h = 1/6 and k = 1/18.

• ΩN = [−3,7] × [−5,5], ~Vb = (1,0.4,0,1/γ)T .

• Reported errors are

ER,∞ =
max{|~V ( ~X) − ~V ∗( ~X)| : ~X in ΩN}

max{|~V ( ~X)| : ~X in ΩN}
=

‖~V − ~V ∗‖ΩN ,∞
‖~V ‖ΩN ,∞

,

where ~V ∗ is a comparison solution from the same codes.
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Maximum Relative Error with No Damping (δ = 0): B.

Maximum relative error ER,∞ with w = 5 and no damping.

T c4o0 c6o0 c8o0 c10o0
25 1.4930D-03 3.1436D-03 8.9365D-03 1.8767D-02
50 6.6326D-05 2.7791D-04 7.3701D-03 2.4321D-02
100 3.1044D-05 2.6507D-04 7.3527D-03 2.4521D-02
200 2.3663D-05 2.2449D-04 7.2923D-03 2.4517D-02
300 2.2813D-05 2.2534D-04 7.2911D-03 2.4516D-02

Maximum relative error ER,∞ with w = 10 and no damping.

T c4o0 c6o0 c8o0 c10o0
50 5.2331D-04 9.1656D-04 2.3565D-03 1.0331D-02
100 2.6468D-05 4.4113D-05 1.9533D-03 1.0577D-02
200 1.9987D-06 1.2023D-05 1.9407D-03 1.0589D-02
300 7.9275D-07 1.0818D-05 1.9408D-03 ******
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Maximum Relative Error with No Damping (δ = 0): C.

• Outer boundary error is propagated like any other signal.

• ER,∞ increases with algorithm order, for each T and w,

due to implicit damping from the greater diffusivity

of the lower order algorithms.

• ER,∞ generally decrease with simulation time T .

• A dissipitive dynamical systems with a periodic driving force

converging to a periodic solution, any initial transient decays.
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Damping With a Uniform Flow: A.

• Uniform flow ~Vb = (1,0.4,0,1/γ)T for (x, y) in [−3,7]×[−5, 5].

• For c4o0, 4x = 4y = h = 1/8 and 4t = k = 1/24.

• For c6o0, c8o0 and c10o0, h = 1/6 and k = 1/18.

• Simulation time T = 100 or T = 300 (or T = 200 for c10o0).

• Damping layer widths w = 5 or w = 10.
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Damping With a Uniform Flow: B.

• For N = 2, ER(δ ≥ 2) > ER(δ = 0),
and ER(δ = 50) is O[102] greater than ER(δ = 0).

• N = 2 can produce errors larger than not damping at all.

• For N 6= 2, ER(δ ≥ 2) is O[10] to O[102] less than ER(δ = 0).

• N polynomial damping has an N th order discontinuity at ∂ΩN .

• Quadratic damping more rapidly distorts the propagating so-
lution surfaces as they enter the damping layer.
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Damping With a Uniform Flow: C.

Smallest observed error ER,∞ with w = 5 at T = 100.

algorithm N = 2 N = 4 N = 6 N = 8
c4o0 2.1854D-05 6.4663D-06 6.5709D-06 6.2108D-06
c6o0 3.1538D-05 6.5983D-06 6.4781D-06 7.0472D-06
c8o0 5.4334D-05 8.2486D-06 6.3638D-06 7.2109D-06
c10o0 1.3842D-04 1.0321D-05 5.9463D-06 7.4360D-06

Smallest observed error ER,∞ with w = 5 at T = 300.

algorithm N = 2 N = 4 N = 6 N = 8
c4o0 1.6771D-05 8.9120D-07 7.2492D-07 7.2492D-07
c6o0 2.6601D-05 9.9872D-07 7.3028D-07 8.1127D-07
c8o0 4.8991D-05 2.7558D-06 7.4484D-07 1.3917D-06

c10o0* 1.3421D-04 3.2921D-06 1.7333D-06 2.6527D-06
c10o0* at T = 200.

20



Damping With a Uniform Flow: D.

• O[10−4] ≤ ER(T = 100) ≤ O[10−6],
O[10−4] ≤ ER(T = 300) ≤ O[10−7].

• The upper right section has the lowest levels in each table.

• Higher N works better with all of the algorithms,
with more necessary improvement for higher order algorithms.

• As a rule of thumb, the damping profile power should be at
least as large as the algorithm order.

• The 9th order c10o0 might need either N ≥ 10 or T ≥ 300.
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The Effect of Damping Layer Width: A.

• Uniform flow ~Vb = (1,0.4,0,1/γ)T for (x, y) in [−3,7]×[−5, 5].

• c8o0 algorithm with h = 1/8 and k = 1/24.

• Damping layer widths w = 5 and w = 10.

• Simulation times T = 100 and T = 300.

•
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The Effect of Damping Layer Width: B.

• Error reduction by doubling w is greater for lower N .

• Error reduction by tripling T is greater for higher N .

• For N = 2, error decrease is more efficient by increasing w,

but the error is generally the largest if all else is the same.

• For N 6= 2, error decrease is more efficient by increasing T ,

and most efficient by increasing both w and T .
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Damping With a Parallel Jet: A.

• ~Vb = (1,0.4+).4 exp[−25y2],0,1/γ)T OR ~Vb = (1,0.4,0,1/γ).

• ΩN = [−3,9] × [−5,5] OR ΩN = [−3,7] × [−5,5].

• For c8o0 with h = 1/12 and k = 1/36.

• Simulation time T = 50.

• Damping layer width w = 5.
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Damping With a Parallel Jet: B.

• This data is for the relatively short simulation time T = 50.

• This grid resolution is doubled from the uniform flow simu-
lations.

• Errors from the uniform and jet flow differ by ≈ 2 to ≈ 5,
so the boundary treatment performs similarly for both.

• All of the effects of damping profile power, damping layer
width, simulation time and algorithm order should apply to
variable coefficient jet simulations with these algorithms just
as they did to constant coefficient uniform flow simulations.
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Conclusions.

• Error can decreases as simulation time T increases,

from decaying transients.

• Error tends to decrease as the damping layer width increases,

more effectively and efficiently for smaller N .

• Error tends to decrease as damping power N increases,

more effectively and efficiently for larger N .

• As a rule of thumb, the damping profile power N

should be at least as large as the algorithm order.
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• Quadratic damping produces the largest errors.

• Damping with a jet and a uniform base flow are similar.

• Dissipitive algorithms implicitly dampen.

• High order algorithms propagate accurately,

both intended signals and also errors.
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